Основы тестирования программного обеспечения


Оценка Покрытия Программы и Проекта


Тестирование программы Р по некоторому критерию С означает покрытие множества компонентов программы P М = {m1...mk} по элементам или по связям

T = {t1...tn} - кортеж неизбыточных тестов ti.

Тест ti неизбыточен, если существует покрытый им компонент mi из M(P,C), не покрытый ни одним из предыдущих тестов t1...ti-1. Каждому ti соответствует неизбыточный путь pi - последовательность вершин от входа до выхода.

V(P,C) - сложность тестирования Р по критерию С - измеряется max числом неизбыточных тестов, покрывающих все элементы множества M(P,C)

DV(P,C,Т) - остаточная сложность тестирования Р по критерию С - измеряется max числом неизбыточных тестов, покрывающих элементы множества M(P,C), оставшиеся непокрытыми, после прогона набора тестов Т. Величина DV строго и монотонно убывает от V до 0.

TV(P,C,Т) = (V-DV)/V - оценка степени тестированности Р по критерию С.

Критерий окончания тестирования TV(P,C,Т)

L, где (0
L
1). L - уровень оттестированности, заданный в требованиях к программному продукту.

Метрика оттестированности приложения

Рис. 4.1.  Метрика оттестированности приложения

Рассмотрим две модели программного обеспечения, используемые при оценке оттестированности.

Для оценки степени оттестированности часто используется УГП - управляющий граф программы. УГП многокомпонентного объекта G (Рис. 4.2, Пример 4.4), содержит внутри себя два компонента G1 и G2, УГП которых раскрыты.

Плоская модель УГП компонента G

Рис. 4.2.  Плоская модель УГП компонента G

В результате УГП компонента G имеет такой вид, как если бы компоненты G1 и G2 в его структуре специально не выделялись, а УГП компонентов G1 и G2 были вставлены в УГП G. Для тестирования компонента G в соответствии с критерием путей потребуется прогнать тестовый набор, покрывающий следующий набор трасс графа G (Пример 4.1):

P1(G) = 1-2-3-4-5-6-7-10; P2(G) = 1-2-3-4-6-7-10; P3(G) = 1-2-11-16-18-14-15-7-10; P4(G) = 1-2-11-16-17-14-15-7-10; P5(G) = 1-2-11-16-12-13-14-15-7-10; P6(G) = 1-2-19-20-23-22-7-10; P7(G) = 1-2-19-20-21-22-7-10; Пример 4.1. Набор трасс, необходимых для покрытия плоской модели УГП компонента G

Иерархическая модель УГП компонента G




- Начало -    - Вперед -



Книжный магазин